Posted On :

The problem of linear elastostatics described in detail in can be extended to include the effects of inertia. The resulting equations of motion take the form

**2 DIMENTIONAL FLUID MECHANICS**

The problem of linear elastostatics described in detail in can be extended to include the effects of inertia. The resulting equations of motion take the form

where u = u(x1 , x2, x3 , t) is the unknown displacement field, ρ is the mass density, and I = (0, T ) with T being a given ti me. Also, u0 and v0 are the prescribed initi al displacement and velocity fields. Clearly, two sets of boundary conditions are set on Γu and Γq , respectively, and are assumed to hold throughout the time interval I . Likew ise, two sets of initial conditions are set for the whole domain Ω at time t = 0. The stron g form of the resulting initial/boundary- value problem is stated as follows: given functions f , t, u¯ , u0 and v0, as well as a constitutive equation for σ, find u in Ω × I , such that the equations are satisfied.

A Galerkin-based weak form of the linear elastostatics problem has been derived in Sec-tion In the elastodynamics case, the only substantial difference involves the inclusion of the term RΩ w • ρu¨ dΩ, as long as one adopts the semi-discrete approach. As a result, the weak form at a fixed time can be expressed as

Following a standard proced ure, the contribution of the forcing vector Fi nt,e due to interele- ment tractions is neglected upon assembly of the global equations . As a result, the equations is give rise to their assembled counterparts in the form

Mu + Kuˆ = F ,

where uˆ is the global unknown displacement vector1 . The preceding equat ions are, of course, subject to initial conditions t hat can be written in vectorial form as uˆ(0) = uˆ0 and vˆ(0) = vˆ0

The most commonly emp loyed method for the numerical solution of t he system of coupled linear second-order ordi nary differential equations is the Newmark m ethod. This

method is based on a time series expansion of ˆu and ˆ u˙ := v.ˆ Concentrating on the time interval (tn ,tn+1], the New mark method is defined by the equations

It is clear that the Newmark equations define a whole family of time inte grators.

It is important to distinguish this family into two categories, namely implicit and explicit integrators, corresponding to β > 0 and β = 0, respectively.

The overhead “hat” symbol is used to distinguish between the vector field u and the solution vector uˆemanating fr om the finite element approximation of the vector field u.

The general implicit Newmar k integration method may be implemented as follows: first, solve (9.18)1 for aˆn+1 , namely write

Then, substitute (9.19) into the semi-discrete form (9.17) evaluated at tn+1 to find that

After solving for uˆn+1, one ma y compute the acceleration aˆn+1 from and the velocity vˆn+1 from.

Finally, the general explicit N ewmark integration method may be implemented as follows: starting from the semi-discrete e quations evaluated at tn+1, one may substitute uˆn+1from to find that

If M is rendered diagonal (see discussion in our pages ), then aˆn+1 can be determined without solving any coupled linear algebraic equations. Then, ˆ are the velocities bvn+1 immediately computed from (9. 18)2. Also, the displacements uˆ n+1 are computed from indepen-dently of the acceleratio ns aˆn+1 .

Tags : Mechanical - Finite Element Analysis - Applications in Heat Transfer & Fluid Mechanics

Last 30 days 61 views
Related words : ### What is 2 Dimentional Fluid Mechanics Define 2 Dimentional Fluid Mechanics Definition of 2 Dimentional Fluid Mechanics where how
meaning of 2 Dimentional Fluid Mechanics
lecturing notes for 2 Dimentional Fluid Mechanics lecture notes question and answer for 2 Dimentional Fluid Mechanics answer
2 Dimentional Fluid Mechanics study material 2 Dimentional Fluid Mechanics assignment 2 Dimentional Fluid Mechanics reference description of 2 Dimentional Fluid Mechanics
explanation of 2 Dimentional Fluid Mechanics brief detail of 2 Dimentional Fluid Mechanics easy explanation solution 2 Dimentional Fluid Mechanics wiki
2 Dimentional Fluid Mechanics wikipedia how why is who were when is when did where did 2 Dimentional Fluid Mechanics list of 2 Dimentional Fluid Mechanics school assignment college assignment
2 Dimentional Fluid Mechanics college notes school notes kids with diagram or figure or image difference between 2 Dimentional Fluid Mechanics www.readorrefer.in - Read Or Refer

Recent New Topics :
| Using OpenMP to Produce a Parallel Application | | Creating and Resuming Suspended Threads | | Parallelization Patterns | | Performance by Design | | How Structure Impacts Performance | | The Performance of 32-Bit versus 64-Bit Code | | The Translation of Source Code to Assembly Language | | JSP-JSD | | Structured System Analysis and Structured Design | | Incremental Design | | Stepwise Refinement | | Describing object-oriented design patterns | | Design Processes and Design Strategies | | Design Methods | | The Architecture Concepts | | What can be modeled using sequence diagrams? | | Association, Aggregation and Composition Relationships | | Software Design: Maintenance and Metrics | | Domain Model | | Overview of Diagrams: Collaboration-Sequence, Class | | Object-oriented systems | | Software Design: Normalization | | Software Design: Cohesion | | Software Design: Coupling | | Software Design: Transform Analysis |